199 research outputs found

    Defects in TRPM7 channel function deregulate thrombopoiesis through altered cellular Mg2+ homeostasis and cytoskeletal architecture

    Get PDF
    Mg2+ plays a vital role in platelet function, but despite implications for life-threatening conditions such as stroke or myocardial infarction, the mechanisms controlling [Mg2+](i) in megakaryocytes (MKs) and platelets are largely unknown. Transient receptor potential melastatin-like 7 channel (TRPM7) is a ubiquitous, constitutively active cation channel with a cytosolic alpha-kinase domain that is critical for embryonic development and cell survival. Here we report that impaired channel function of TRPM7 in MKs causes macrothrombocytopenia in mice (Trpm7(fl/fl-Pf4Cre)) and likely in several members of a human pedigree that, in addition, suffer from atrial fibrillation. The defect in platelet biogenesis is mainly caused by cytoskeletal alterations resulting in impaired proplatelet formation by Trpm7(fl/fl-Pf4Cre) MKs, which is rescued by Mg2+ supplementation or chemical inhibition of non-muscle myosin IIA heavy chain activity. Collectively, our findings reveal that TRPM7 dysfunction may cause macrothrombocytopenia in humans and mice

    Outside-In Signalling Generated by a Constitutively Activated Integrin αIIbβ3 Impairs Proplatelet Formation in Human Megakaryocytes

    Get PDF
    BACKGROUND: The interaction of megakaryocytes with matrix proteins of the osteoblastic and vascular niche is essential for megakaryocyte maturation and proplatelet formation. Fibrinogen is present in the vascular niche and the fibrinogen receptor α(IIb)β(3) is abundantly expressed on megakaryocytes, however the role of the interaction between fibrinogen and α(IIb)β(3) in proplatelet formation in humans is not yet fully understood. We have recently reported a novel congenital macrothrombocytopenia associated with a heterozygous mutation of the β(3) subunit of α(IIb)β(3). The origin of thrombocytopenia in this condition remains unclear and this may represent an interesting natural model to get further insight into the role of the megakaryocyte fibrinogen receptor in megakaryopoiesis. METHODOLOGY/PRINCIPAL FINDINGS: Patients' peripheral blood CD45+ cells in culture were differentiated into primary megakaryocytes and their maturation, spreading on different extracellular matrix proteins, and proplatelet formation were analyzed. Megakaryocyte maturation was normal but proplatelet formation was severely impaired, with tips decreased in number and larger in size than those of controls. Moreover, megakaryocyte spreading on fibrinogen was abnormal, with 50% of spread cells showing disordered actin distribution and more evident focal adhesion points than stress fibres. Integrin α(IIb)β(3) expression was reduced but the receptor was constitutively activated and a sustained, and substrate-independent, activation of proteins of the outside-in signalling was observed. In addition, platelet maturation from preplatelets was impaired. CONCLUSIONS/SIGNIFICANCE: Our data show that constitutive activation of α(IIb)β(3)-mediated outside-in signalling in human megakaryocytes negatively influences proplatelet formation, leading to macrothombocytopenia

    Human Platelet-Rich Plasma- and Extracellular Matrix-Derived Peptides Promote Impaired Cutaneous Wound Healing In Vivo

    Get PDF
    Previous work in our laboratory has described several pro-angiogenic short peptides derived from endothelial extracellular matrices degraded by bacterial collagenase. Here we tested whether these peptides could stimulate wound healing in vivo. Our experiments demonstrated that a peptide created as combination of fragments of tenascin X and fibrillin 1 (comb1) applied into cranial dermal wounds created in mice treated with cyclophosphamide to impair wound healing, can improve the rate of wound closure. Furthermore, we identify and characterize a novel peptide (UN3) created and modified from two naturally-occurring peptides, which are present in human platelet-rich plasma. In vitro testing of UN3 demonstrates that it causes a 50% increase in endothelial proliferation, 250% increase in angiogenic response and a tripling of epithelial cell migration in response to injury. Results of in vivo experiments where comb1 and UN3 peptides were added together to cranial wounds in cyclophosphamide-treated mice leads to improvement of wound vascularization as shown by an increase of the number of blood vessels present in the wound beds. Application of the peptides markedly promotes cellular responses to injury and essentially restores wound healing dynamics to those of normal, acute wounds in the absence of cyclophosphamide impairment. Our current work is aimed at understanding the mechanisms underlying the stimulatory effects of these peptides as well as identification of the cellular receptors mediating these effects.National Institutes of Health (U.S.) (Grant EY15125)National Institutes of Health (U.S.) (Grant EY19533)Wound Care Partners, LL

    Consensus Paper—ICIS Expert Meeting Basel 2009 treatment milestones in immune thrombocytopenia

    Get PDF
    The rarity of severe complications of this disease in children makes randomized clinical trials in immune thrombocytopenia (ITP) unfeasible. Therefore, the current management recommendations for ITP are largely dependent on clinical expertise and observations. As part of its discussions during the Intercontinental Cooperative ITP Study Group Expert Meeting in Basel, the Management working group recommended that the decision to treat an ITP patient be individualized and based mainly on bleeding symptoms and not on the actual platelet count number and should be supported by bleeding scores using a validated assessment tool. The group stressed the need to develop a uniform validated bleeding score system and to explore new measures to evaluate bleeding risk in thrombocytopenic patients—the role of rituximab as a splenectomy-sparing agent in resistant disease was also discussed. Given the apparently high recurrence rate to rituximab therapy in children and the drug's possible toxicity, the group felt that until more data are available, a conservative approach may be considered, reserving rituximab for patients who failed splenectomy. More studies of the effectiveness and side effects of drugs to treat refractory patients, such as TPO mimetics, cyclosporine, mycophenolate mofetil, and cytotoxic agents are required, as are long-term data on post-splenectomy complications. In the patient with either acute or chronic ITP, using a more personalized approach to treatment based on bleeding symptoms rather than platelet count should result in less toxicity and empower both physicians and families to focus on quality-of-life

    A gain-of-function variant in DIAPH1 causes dominant macrothrombocytopenia and hearing loss

    Get PDF
    Macrothrombocytopenia (MTP) is a heterogeneous group of disorders characterized by enlarged and reduced numbers of circulating platelets, sometimes resulting in abnormal bleeding. In most MTP, this phenotype arises because of altered regulation of platelet formation from megakaryocytes (MKs). We report the identification of DIAPH1, which encodes the Rho-effector diaphanous-related formin 1 (DIAPH1), as a candidate gene for MTP using exome sequencing, ontological phenotyping, and similarity regression. We describe 2 unrelated pedigrees with MTP and sensorineural hearing loss that segregate with a DIAPH1 R1213* variant predicting partial truncation of the DIAPH1 diaphanous autoregulatory domain. The R1213* variant was linked to reduced proplatelet formation from cultured MKs, cell clustering, and abnormal cortical filamentous actin. Similarly, in platelets, there was increased filamentous actin and stable microtubules, indicating constitutive activation of DIAPH1. Overexpression of DIAPH1 R1213* in cells reproduced the cytoskeletal alterations found in platelets. Our description of a novel disorder of platelet formation and hearing loss extends the repertoire of DIAPH1-related disease and provides new insight into the autoregulation of DIAPH1 activity.The NIHR BioResource- Rare Diseases and the associated BRIDGE genome sequencing projects are supported by the National Institute for Health Research (NIHR; http://www.nihr.ac.uk). B.N. was supported by the Deutsche Forschungsgemeinschaft (SFB 688). S.S. was supported by a grant of the German Excellence Initiative to the Graduate School of Life Sciences, University of Würzburg. ET, DG, JCS, SP, IS, CJP, RM, SAsh, ST and KS are supported by the NIHR BioResource - Rare Diseases. KF, CT, and CVG are supported by the Fund for Scientific Research-Flanders (FWO-Vlaanderen, Belgium, G.0B17.13N) and by the Research Council of the University of Leuven (BOF KU Leuven‚ Belgium, OT/14/098). WNE is supported by the Cancer Council Western Australia. Research in the Ouwehand laboratory is supported by program grants from the European Commission, NIHR to WJA, SM, MK, RP, SBJ and WHO under numbers RP-PG-0310-1002; the laboratory also receives funding from NHS Blood and Transplant; CL and SKW are supported by Medical Research Council (MRC) Clinical Training Fellowships (number MR/K023489/1) and TKB by a British Society of Haematology/NHS Blood and Transplant grant. MAL and CL are supported by the Imperial College London Biomedical Research Centre; JRB acknowledges support by the NIHR Cambridge Biomedical Research Centre and SR by the Medical Research Council and Cambridge Biomedical Research Centre. CVG is holder of the Bayer and Norbert Heimburger (CSL Behring) Chairs. ADM is supported by the NIHR Bristol Cardiovascular Biomedical Research Unit
    • …
    corecore